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A-~o. ,  - 
Fig. 2. 

which, using (5), gives 

0(11) ---- re. (~/2z*)½ 2n+  1 )(--i)nJn+i(z *) 
n ~ 0  m ~ - - n  . 

(n- -m)!  } 
× (n+m)-~v. P~  (cos ½~)P~ (cos 0")exp [im(~*--~vl)] • 

This is an expansion of G(vl) in spherical harmonics. 
Now 

P~n+l(0) = 0 ,  

P~,(O) = (--)".(2n)!/2~n(n!) ~ . 
Hence 

G°,+l(r *) : O, 

(4n + 1)(2n) !. (~/2z*)½ .J2n+½(z*) . 
G°'(r*) ---- t~" 22~. (n !)~ 

Therefore, the contribution this atom makes to the 
average intensity per molecule from the whole as- 
semblage is 

I~(r*,O*) = 

2 9 Dg~l~i(dir*)-½J2n+½(2z~dir*)P2n (cos 0") . 
n = 0  

Here subscripts i have been added to all quantities 
referring to the particular atom considered. The 
average intensity per molecule is therefore 

I(r*,O*)--  ~ I i ( r * , O * ) ,  
i 

where the summation is taken over all atoms in the 
Patterson fold of the real molecule. 

Two things about this summation should be noted. 
First, since di always occurs together with r* as the 
product r 'd ,  a change in the value of d leaves the 
form of I(r*, 0") unchanged and the effect can be 
regarded as a change in the scale of r*. A similar 
remark is true of the previous example. Secondly, 
the contribution of the large atom at the origin of the 
Patterson fold is large, positive and constant, and 
will therefore prevent I(r*,O*) from becoming 
negative, as it would do otherwise. 

The method of this paper is to express G(rl) etc. 
as spherical harmonic expansions. This is the 
mathematical form most suited for averaging a 
function over various orientations about a fixed 
point. In this paper the function so averaged is 
G(rl). This choice is dictated by the physics of the 
problem. The averaging process can be applied equally 
well to F(I1), the Fourier transform of the molecular 
density, to give a mean structure factor (Zachariasen, 
1945, p. 223) though in certain problems difficulties 
may arise from phase factors. 

The author is indebted to Prof. P. P. Ewald, who 
suggested this problem, for advice and encouragement 
and to The Queen's University of Belfast for the 
award of a Senior Studentship. 
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For a centro-symmetrical structure, the inequalities of of structure factors or to deduce relations among them. 
Harker & Kasper (1948)permit us to determine the signs One important inequality generally applicable to a centro- 
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symmetr ical  s t ructure is 

( U ~ ± U ~ , )  ~ ~ (I~=UB+~,)(I~U~_~,) ,  (1) 

where U~ is the  un i ta ry  structure factor for the  reflexion 
H ~ hkl.  Since the  computat ional  application of (1) 
involves mult ipl ication,  it is ra ther  tedious to deal wi th  
such a great  number  of combinations of U~'s appearing 
in (1) as is necessary in an actual procedure of sign 
determinat ion.  I n  view of this fact, a graphical me thod  is 
devised which requires no computa t ion  and is convenient  
to use. 

Pu t t ing  

IU~l+Iu~,[  = k,  l ± l U ~ + ~ , l  = x ,  l ± l U ~ - ~ , l  = Y;  

i t  follows from (1) t ha t  the allowed values of X and Y 
mus t  satisfy the  inequal i ty  

k ~ < X Y ,  (2) 

which requires t ha t  the  values of X and Y satisfying it 
mus t  lie on the positive side of a rectangular  hyperbola  
x y - - k *  = O. In  Fig. 1 we draw this rectangular  hyper- 
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Fig. 1. Chart for the graphical method. For the sake of mere 
illustration hyperbolas are drawn at intervals of 0.2 for 
varying values of k. Four cases (a), (b), (c) and (d) are 
distinguished by varying the value of k, I U//+H,I and 
[U~_//,[ being held constant. 

bola and  take  four points  A, B, C and D so tha t  their  
co-ordinates, referred to the  point  0 '  (x---- 1, y---- 1) as 
origin, are respectively four possible combinatio~u of 
-t- [ UB+R'], ~ [ UH-R']. Here we may  arbitrari ly assume 
t h a t  [UB+H,[ > [UH-R']. Then, among the  four points, 
only those lying on the  positive side of the  hyperbola  
can be allowed, and  from this, wi thout  any computat ion,  
we can readily find a relat ion among the  signs of 
U~,  UH,, U~+R, and  UH_~,. This is the  principle of the  
graphical method.  

Since a rectangular  hyperbola  is symmetr ical  wi th  
respect to the  s traight  line x ---- y ( 0 0 '  in Fig. 1), only 
one half of the  diagram, say the port ion bounded  by the  
x axis and the  line 00", will suffice in practice, and  the  
points C and D can then  be taken  at  the respective 
symmetr ical  points C' and  D'. 

A chart  was constructed consisting of rectangular  
hyperbolas drawn for varying values of k from 0-2 to 1.8 
a t  intervals of 0.02, which proved to be sufficient for 
practical  purposes. 

According to the  relat ive magni tudes  of k, [ U~+~,] and  

I UH_H,[, four cases can arise and are shown in Fig. 1 as 
cases (a), (b), (c) and (d). Le t  SR be the  sign of UH. Then, 
remember ing  tha t  SH+~, is the sign of the  larger one 
between [ UH+H" [ and  [ UB-n'],  it can easily be shown tha t  
the  conclusion drawn for each case is as follows: 

Case (a): Stt+H" = SLt--H" -~ St tSH' .  
Case (b): SH+H" = SHSB, ,  SH-H" undetermined.  
Case (c): SB+~, and SH-H" cannot  be equal to - -SHSH,  

at  the  same time. 
Case (d): no conclusion. 

In  UH or UB, is zero, only case (c) or (d) is possible, and  
for case (c) the  point  A is not  allowed. The conclusion 
for case (c) is therefore SH+B" = --SH--H'. 

So far only the  value of k = [UR[~-[UH,] has been 
considered. Now, pu t t ing  

k ' =  IIv~l-lUB,l[, 

it  is readily seen tha t  for the  values of k' only ei ther 
of two cases corresponding to the  above (c) and (d) is 
allowed, which we designate as (c') and  (d'). Moreover, 
the  allowed combinat ions of the former four cases wi th  
these two are only those listed in Table 1, where the  
conclusion drawn for each combinat ion is also given. 

Table 1. Possible cases and  conclusions f o r  the use o f  the 

Case 

(a) (d') 
(b) (c') 
(b) (d') 
(0) (c') 
(c) (d') 
(d) (d') 

inequal i ty  (1) 

[ Utt+tt,[ ~ [ UIt-H'[ is assumed. 
Grison's 

Conclusion classification 

SH+R'=S~--B'----S~SB" E ~ B ~ D ~ F 
S B + B ' = S ~ S H ' ,  SH+B" = - -SH-H'  E ~ C ~ F ~ D 
SH+H'=SBSH,,SH_H, undetermined E ~ C ~ D ~ F 

S~+H'---- -- S~-R"  E ~ F > D 
S~+H" ---- SH-R" = -- SItSIt" not allowed E ~ D ~ z~ 
None 

During the  preparat ion of this manuscr ip t  the  paper  of 
Grison (1951) appeared, in which a similar table for using 
the  inequal i ty  (1) has been given. In  Table 1 his clas- 
sification of the  various eases is added  in terms of his 
nota t ion  for comparison. 

The results of sign de terminat ion  are obtained in the  
form, for example, SB+B'----SBSB,. Wi thou t  the  knowledge 
of the  relat ion be tween S• and  SH,, SH+H" cannot  be 
uniquely determined.  If we choose, as is possible in m a n y  
cases, the pairs of U~ and UB, of which the  relations 
between the  signs are fixed by space-group symmetry ,  
SH+B, can be de te rmined  as ei ther ~-1 or --1. Fur ther ,  
even if the  relations between SH and SB, are unknown,  
the  results are expressed by introducing parameters  
a, b, c . . . . .  and some of these parameters  can be deter- 
mined  in due course in the  manner  shown by Gillis (1948). 
In  this connexion it  should be remarked tha t  a definite 
number  of arbi t rary parameters  mus t  be involved in the  
final results according to the  number  of possible ways of 
choosing the  origin, and  to these parameters  we can 
arbitrari ly assign + 1 or --1. This point  mus t  be taken  
into account  before proceeding to sign determinat ion.  

We have so far confined ourselves to the inequal i ty  (1). 
I t  is noted,  however,  t ha t  the  same graphical m e t h o d  
can be used in applying other  inequalit ies which are of 
the  type  (2) or a special case of it. 
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The graphical me thod  was used to determine the  signs 
of P(hk0)'s and P(0k/) 's of tetragonal  e thylenediamine 
sulphate. Using the  above-ment ioned chart, together  
with the  inequal i ty  (1), the signs of 21 out of 31 F(hk0)'s 
and  those of 38 out of 57 F(0k/)'s could easily be deter- 
mined,  and  it was possible to make  at  once Fourier  
projections on (001) and  (100). Details of the  structure 
de terminat ion  will be published later. 

The author  wishes to t h a n k  Prof. I. N i t t a  for his 
interest  and helpful advice. This invest igation was sup- 
por ted  by a grant  from the Ministry of Educat ion.  
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In  connection wi th  a recent  invest igation by Bowles 
(1951) concerning the  habi t  plane of the  fl-~ l i thium 
transformation,  we have carried out  an analogous in- 
vestigation of the  habi t  plane of the  zirconium trans- 
formation. These t ransformations have the same cry- 
stallographic character,  both  with regard to lattice type 
(body-centred cubic to close-packed hexagonal) and 
orientat ion relationship ( { 110 }~[ [ {0001 } ~; [ 111] ~ [ [ [ 1120] ~). 

For  l i th ium Bowles found the  habi t  plane to be 
approximately  { 144 } of the  cubic lattice. As the  mechanism 
proposed by Burgers & Jacobs (1934) for zirconium in- 

• volves as the  principal shear a shear parallel to a {211 } 
plane of the  cubic lattice, the  habi t  plane found for 
l i thium cannot  be directly unders tood on the  basis of 
this mechanism. Therefore, as Bowles suggests, the  
possibility mus t  be envisaged tha t  the Burgers mechanism 
proposed for zirconium mus t  be revised. 

For  our measurements  we employed the original 
mater ia l  used by Burgers & Jacobs when determining 
the orientat ion relationship between the two lattices in 
the zirconium transformation,  namely,  two crystals 
prepared by de Boer and Fast  by thermal  decomposit ion 
of ZrJ  4 on a core wire at  a tempera ture  above the  
t ransi t ion point  (-b862 ° C.). Prepared in this way, these 
two 'crystals '  were cubic single crystals (cubic in the  
parent  phase);  they  had  the form of rods of about  1 cm. 
length and 1 ram. thickness, one wi th  a six-sided and one 
wi th  a four-sided cross-section. On grounds, given in 
Burgers 's paper, it  was assumed tha t  the lengths of these 
rods were originally parallel to a [111] direction and  a 
[001] direction respectively, whereas the  side-faces of 
both  rods were parallel to {110} planes. 

Several faces of both  rods, which in their  present  s tate 
at  room tempera ture  consist of aggregates of definitely 
oriented hexagonal  crystallites, were etched wi th  e tchant  
No. 3 (Roberson, 1949) and  the  directions of the relief 
effects observed on the surfaces were measured.  The 
accuracy of these measurements  lies wi thin  2 °. Fig. 1 
shows an example of an etched surface. 

By plot t ing in stereographic projection the zones tha t  
were normal  to each of the traces and  determining their  
common point  of intersection in a way analogous to tha t  
followed by Bowles, we found in the case of the six-sided 
rod tha t  the  habi t  plane was either {569} or {145}. The 
ambigui ty  between these two possibilities arises from the 
fact that ,  for a particular {110} boundary  face, it is not  
known which of the  two [111] directions in this plane 
coincides wi th  the axis of the rod. DependanV on this 

choice the  chosen plane can be considered as ' r ight '  or 
'left '. 

This ambigui ty  does not  present  itself wi th  the  four- 
sided rod, as the length in this case is the  only [001] 
direction in a {110} plane. We therefore hoped to solve 
the al ternat ive wi th  the  aid of this rod, but  unfor tunate ly ,  

Fig. 1. Traces of habit plane on a {110} plane of a transformed 
single crystal of cubic zirconium, obtained with Roberson's 
etching reagent No. 3. Schematic drawing from actual 
photograph (magnification 50 × ). 

for reasons unknown,  we did not  succeed wi th  this rod 
in obtaining such well defined traces as wi th  the  six- 
sided one. 

In  an effort to solve this a l ternat ive we took the  traces 
on adjacent boundary  faces of the  six-sided rod in pairs, 
considering each pair as the intersection of the  habi t  
plane wi th  the  two adjacent  surfaces, and determined the  
poles of the  planes of intersection for each of the  two 
above-ment ioned possibilities. For the  possibility t ha t  
gave {569} for the  habi t  plane according to the  me thod  
described above, the  poles corresponding to the planes 
of intersection, while exhibit ing a weak spreading, had  
- - i n  stereographic p ro jec t ion- -a  'centre of gravi ty '  very  
close to {569}. For  the other possibility not  only was the  
spreading large, but  also the point  {145} lay outside 
the region enclosed by the  poles. However,  we do no t  
want  to stress this point  too much.  

We may  conclude tha t  our measurements  agree wi th  
those of Bowles in so far as both  point  to a habi t  plane 
for the  t ransformation of a cubic body-centred into a 
close-packed hexagonal  lattice wi th  rather  complicated 


